Skip to main content
Version: 0.5

On-Demand Feature Views that Return Struct Features

info

This feature is not supported in Tecton on Snowflake.

If you are interested in this functionality, please file a feature request.

You can include a Struct data type in the output schema of an On-Demand Feature View (ODFV). A Struct can contain multiple fields with mixed data types.

A Struct can be nested within other complex types. For example, you can have a Struct within a Struct, or an array of Structs.

Using a Struct in the output schema of an ODFV allows you to easily parse the ODFV's output when it contains multiple feature values.

Example usage: An output Struct containing two fields​

The ODFV definition​

from tecton import on_demand_feature_view, RequestSource
from tecton.types import Array, Field, Float64, String, Struct

request_source = RequestSource([Field("input_float", Float64)])

output_schema = [
Field(
"output_struct",
Struct([Field("string_field", String), Field("float64_field", Float64)]),
)
]


@on_demand_feature_view(
mode="python",
sources=[request_source],
schema=output_schema,
description="Output a struct with two fields.",
)
def simple_struct_example_odfv(request):
input_float = request["input_float"]
return {
"output_struct": {
"string_field": str(input_float * 2),
"float64_field": input_float * 2,
}
}

Example usage in a notebook​

import tecton
import pandas

spine_df = pandas.DataFrame(data={"input_float": [1.23, 3.22]})

simple_struct_example_odfv = tecton.get_workspace("my_workspace").get_feature_view("simple_struct_example_odfv")
simple_struct_example_odfv.get_historical_features(spine_df).to_spark().show(10, False)

Output:

+-----------+-----------------------------------------+
|input_float|simple_struct_example_odfv__output_struct|
+-----------+-----------------------------------------+
|1.23 |{2.46, 2.46} |
|3.22 |{6.44, 6.44} |
+-----------+-----------------------------------------+

Example HTTP request​

$ curl -X POST http://<your_cluster>.tecton.ai/api/v1/feature-service/get-features\
-H "Authorization: Tecton-key $TECTON_API_KEY" -d\
'{
"params": {
"workspace_name": "my_workspace",
"feature_view_name": "simple_struct_example_odfv",
"request_context_map": {
"input_float": 1.23
},
"metadata_options": {
"include_names": true,
"include_data_types": true
}
}
}'

Output:

{
"result": {
"features": [["2.46", 2.46]]
},
"metadata": {
"features": [
{
"name": "output_struct",
"dataType": {
"type": "struct",
"fields": [
{
"name": "string_field",
"dataType": {
"type": "string"
}
},
{
"name": "float64_field",
"dataType": {
"type": "float64"
}
}
]
}
}
]
}
}

Example usage: An output Struct containing an array of Structs with some nulls​

The ODFV definition​

from tecton import on_demand_feature_view, RequestSource
from tecton.types import Array, Field, Float64, String, Struct

request_source = RequestSource([Field("input_float", Float64)])

output_schema = [
Field(
"array_of_structs",
Array(Struct([Field("string_field", String), Field("float64_field", Float64)])),
),
]


@on_demand_feature_view(
mode="python",
sources=[request_source],
schema=output_schema,
description="Output an array of Structs with some null examples.",
)
def array_of_structs_example_odfv(request):
input_float = request["input_float"]
return {
"array_of_structs": [
{"string_field": str(input_float * 2), "float64_field": input_float * 2},
{"string_field": str(input_float * 3), "float64_field": input_float * 3},
# A Struct missing one key and setting the other explicitly to None. These are equivalent
# was to return a "null" field.
{
"string_field": None,
# "float64_field": ...
},
# All Tecton data types are nullable, including Structs.
None,
]
}

Example usage in a notebook​

array_of_structs_example_odfv = tecton.get_workspace("my_workspace").get_feature_view("array_of_structs_example_odfv")
array_of_structs_example_odfv.get_historical_features(spine_df).to_spark().show(10, False)

Output:

+-----------+------------------------------------------------+
|input_float|array_of_structs_example_odfv__array_of_structs |
+-----------+------------------------------------------------+
|1.23 |[{2.46, 2.46}, {3.69, 3.69}, {null, null}, null]|
|3.22 |[{6.44, 6.44}, {9.66, 9.66}, {null, null}, null]|
+-----------+------------------------------------------------+

Example HTTP request​

$ curl -X POST http://<your_cluster>.tecton.ai/api/v1/feature-service/get-features\
-H "Authorization: Tecton-key $TECTON_API_KEY" -d\
'{
"params": {
"workspace_name": "my_workspace",
"feature_view_name": "array_of_structs_example_odfv",
"request_context_map": {
"input_float": 1.23
},
"metadata_options": {
"include_names": true,
"include_data_types": true
}
}
}'

Output:

{
"result": {
"features": [[["2.46", 2.46], ["3.69", 3.69], [null, null], null]]
},
"metadata": {
"features": [
{
"name": "array_of_structs",
"dataType": {
"type": "array",
"elementType": {
"type": "struct",
"fields": [
{
"name": "string_field",
"dataType": {
"type": "string"
}
},
{
"name": "float64_field",
"dataType": {
"type": "float64"
}
}
]
}
}
}
]
}
}

Note that null or missing fields are returned in the JSON response as JSON null, and that there is a difference between a Struct containing all null values and a null Struct. Both are shown in this example.

Was this page helpful?

Happy React is loading...